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TECHNICAL NOTE 2553 

PITCHING-MOMENT DERIVATIVES    C„      AND    C^    AT SUPERSONIC 

SPEEDS FOR A SLENDER-DELTA-WING AND SLENDER-BODY 

COMBINATION AND APPROXIMATE SOLUTIONS FOR 

BROAD-DELTA-WING AND SLENDER- 

BODY COMBINATIONS 

By Arthur Henderson,  Jr. 

SUMMARY 

The pitching-moment derivatives    Cm      arid    C-^.     at supersonic  speeds 
are developed for a slender-delta-wing and slender-body combination 
having no afterbody.    By drawing an analogy between the aerodynamics of 
the wing-body section of the combination and the aerodynamics of a delta 
wing alone,  the results for the  slender-deIta-wing and slender-body com- 
bination are modified to the extent that approximate  solutions for    Cm 

and    CJU^    for broad-delta-wing and slender-body combinations can be 
obtained. 

INTRODUCTION 

Various methods, based on linear theory, for obtaining solutions 
for the flow about wing-body combinations have been developed for the 
determination of the lift and moment due to angle of attack. Refer- 
ences 1 to 7 comprise a fairly comprehensive list of most of the signif- 
icant of these methods, which include both approximate and exact solu- 
tions. All the exact solutions to the linearized differential equation 
of steady supersonic flow, however, employ iteration processes, infinite 
series, or both, and their practical application results in approximate 
solutions although the error is often negligible, depending upon the 
particular problem, rate of convergence, number of iterations, and so 
forth. Spreiter (reference 7) has presented solutions in closed form 
to the two-dimensional Laplace equation of potential flow for the lift 
and moment of wing-body combinations. These solutions apply to the super- 
sonic range for the limiting case of a slender wing-body configuration. 
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For the stability derivatives of wing-body combinations,  there are 
a few papers on the damping-in-roll characteristics  (see,  for example, 
references 8 and 9) but none for the damping in pitch. 

The purpose of the present paper is to extend the method used by 
Spreiter in reference 7 to the calculation of the pitching-moment deriva- 
tives due to constant rate of pitch    fCm \    and due to constant accel- 

erated motion in the vertical direction    (Cm^J    for a slender-delta-wing 
and slender-body combination.     In addition,   an approximate solution to 
these derivatives is developed for a broad-delta-wing and slender-body 
combination in supersonic flow by introducing certain modifying factors 
into the slender-delta-wing and slender-body results. 

Certain conditions are placed upon the configuration.    The body 
ahead of the wing is slender, has a circular cross section,  and is 
pointed at the nose,  and the  slope of the body meridian section is 
continuous.    For the wing-body section,  the wing semiapex angle is smallj 
along the wing-body juncture, the body radius is a maximum and is con- 
stant j  and finally, the configuration has no afterbody (see fig.  l). 

SYMBOIS 

0,0' potential functions 

\|r,T|r'     stream functions 

Z       complex variable (y + iz) 

R       body radius (R = R(x) on body ahead of wing and R = a along 
wing-body section) 

a body radius along wing-body section 

s y-coordinate of wing leading edge 

w velocity in positive z-direction 

r,ö polar coordinates 

q constant angular velocity of pitch 

a constant time rate of change of angle of attack (1 dw\ 
\V ät) 
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p       perturbation pressure (difference in pressure between body- 
surface and free stream) 

P density of fluid 

t time 

x,y,z Cartesian coordinates 

V free-stream velocity 

xo point of rotation measured from nose 

n inward-drawn unit normal vector 

M pitching moment 

A area of basic wing (including portion enclosed by body) 

Cm pitching-moment coefficient   '     M 

ipV2Ac/ 

-m nondimensional stability derivative due to constant rate of 

CJJ^     nondimensional stability derivative due to constant accelerated 

motion in vertical direction I ZzE' 

root chord of basic wing 

v 2V/a—*0/ 

c mean aerodynamic chord of basic wing (-c) 

c' root chord of exposed wing 

I total length of wing-body configuration 

e semiapex angle of basic wing 
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s0      value of s at x = x0 or at c0 

s™ov    maximum value of s (value of s at x = l) 

c0      point of rotation measured from apex of basic wing) positive 
in positive x-direction 

e.f,g, 
k m     interference factors 

M       Mach number 

ß = /M2 - 1 

K = tan g 

Q       constant of integration 

Bmax 

E'(ßK)   complete elliptic integral of second kind 

I /    1/1 -(l - ß2K2)sin20 d0 

F'(ßK)   complete elliptic integral of first kind 

do (r*r ß2K2)sin20 

>-, 1 -  ß2K2" AJL 

(l - 2ß< 
5K2)E '(ßK)   + ß2^1 (PK) 

■\ 
1 

X2 E'(ßK) 

h _ 3 + 2ß2 

ß2 
Ap   — 3d + 

ß2 
^lxx 
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Subscripts: 

W       wing 

B       body 

q       due to q 

d       due to & 

ANALYSIS 

The linearized differential equation of steady supersonic flow is 

Öx2      ör2      r¥      r2 Ö02 

At present an exact solution to this equation does not exist in closed 

form for wing-body combinations. However, if the term ß2 —- becomes 
dx 

very small with respect to the other terms of this equation, it may be 
neglected. Solutions to the Laplace equation which results from dropping 

p ä {i 
the term ß —£ have been found in closed form for the lift and moment 

Ox2 

due to angle of attack (reference 7)•     It has been found that the condi- 

2 ä2(Z$ tion necessary for    ß    —£j   to be negligible for the angle-of-attack case 

is that the configuration be  slender and that    ß      be not excessive.    For 

a delta-wing and body combination,  the term slender implies that    -?—, 
r\ CIX 

ddB 
—,     and    K    are very small. 

dx2 

In the present paper,  which treats the steady-pitching and the 
time-dependent,   constant-acceleration cases of delta-wing and body 
combinations,  a velocity potential satisfying the two-dimensional 
Laplace equation is used.     In the appendix it is shown that the conditions 
to be  satisfied for the Laplace  solution to be applicable to the  super- 

2 
sonic range are that -=—, —-, K,  q,  and & be very small. 

dx  dx^ 
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After a velocity potential which satisfies the Laplace equation is 
found,  the next  step in the analysis is the determination of the pressure 
distributions over the slender-delta-wing and slender-body combination 
resulting from the two types of motion which give rise to    Cm      and    Cm-, 

namely,   constant, rate of pitch and constant accelerated motion in the 
positive z-direction,   respectively.    When the pressure distribution is 
known,  the moment may be calculated about any axis of the configuration, 
and,  from their respective definitions,    Cm      and    C-.    may then be deter- 

mined.    The configuration to be considered and the coordinate system 
employed are  shown in figure 1. 

Velocity Potential 

Spreiter (reference 7)   shows that the complex potential for a 
uniform stream of velocity    w    at infinity flowing vertically downward 
over a stationary two-dimensional circular cylinder symmetrically located 
on a horizontal flat plate is 

0'   + iT|f'   = iw 'Z + s + R£ 
1/2 

(1) 

where 

y + iz 

R radius of cylinder 

s      semispan of plate measured from center of cylinder 

For a slender configuration describing a slow, steady pitching 
motion, the cross-flow velocity distribution is, to the first order, 
proportional to x.  Inasmuch as potential flow is assumed, this velocity 
distribution must be looked upon as being generated by the motion of the 
configuration ,in fluid which is at rest, because, if the distribution 
were due to the motion of the fluid about a stationary body, the flow 
must be rotational and the assumption of potential flow is then violated. 

The complex potential of the aforementioned configuration moving 
upward through still air with the vertical velocity w then is 

0 + ii|f = iw- Z + 
Rc 

s + 
Rc 1/2 

(2) 
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Transforming to polar coordinates  (Z = r(cos 0 + i sin ©))   and solving 
for the velocity potential gives 

\l/2 

<f> =  -v 
fll 

1/2 

cos 20 

r^ +R^ ofl   ,   sk + Rh 

  cos 20 + ——-— 
sc 

- r sin 0 (3) 

Equation (3)   is the general expression for the velocity potential. 
Whether    0    pertains to the constant-pitching or the constant-acceleration 
case depends upon the value of    w.    For a wing-body configuration pitching 
about a point    xQ    from the nose, the vertical velocity    w    varies along 
the length of the configuration according to    w = q (x - XQ).    For con- 
stant acceleration in the positive z-direction,  the velocity varies with 
time according to    w = dVt. 

Pressure Distribution 

The equation for the pressure distribution is 

P = P ox 2\brl ot W 

The term 2\3r7 does not contribute to either the lift or moment since 

on the body it is  symmetric and on the wings,   although   ^-    is antisym- 
,2 Ör 

metric >m is symmetric; therefore, for the configuration considered, 

= pfv 
öx  öt; 

(5) 

For the case of pitching with constant angular velocity, 

pq  PV
\5R dx  5S dx  SW dx 

¥c 00c 
(6) 
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and for constant acceleration, evaluated at time t = 0, 

P* = P -'a (7) 

In order to determine the loading over the wing-body combination as • 
given by equations (6) and (7).» the pressure distributions in two regions 
must be considered for each expression. They are: 

(a) Pq a, on the body where r = R 

(b) T> • on the wing where 0 = 0 and  a %  r = s 

For the pitching wing-body combination with w = q(x - XQ)  and the 
preceding conditions, equation (6) gives for the pressure over the body 
and wing, respectively, 

W B -pVq 
-Rs sin 0 +   ]/a^  + R*4" - 2R2s2cos 20 

2R(X-XQ)(R
2
- s2cos 20) dR     (x - xp)( B^  - R^)    ds 

s/s^ + R^ - 2R2s2cos 20 dX  s2/s^ + Hk  - 2R2s2cos 20 dX_ 
(8a) 

(Pq)w =  "PVq 
Ar2 - S

2
)(R

4
 - r2s2)   ,     2R3(x - Xp)(r2 -  s2)    dR + 

rs 
rs/(r2 -  S

2
)(R^ - r2s2)dX 

r(x -  xn)(.s4 - Bk)        ds 

s2/(r2 -  a2)(^ -  r2s2) dX_ 

(8b) 

Similarly,   for the  case of constant acceleration,   in which    w 
used,  equation (7) yields 

(pi)B = -PVd 
^    a-    ^ OTj2„2 + R4" - 2Rc:s^cos 20  - Rs  sin 0 

Vat    is 

(9a) 
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(Pä)w =  " =  _pVa \^~^k ~ ^) 
rs (9b) 

Cm      and    Cjj^    for Slender-Delta-Wing and Slender-Body Combinations 

The moment  on the wing-body configuration measured about  a point    xQ 

from the  nose  is 

M =    /     (x - xQ)n  .   p dA 
7A 

(10) 

where n is an inward-drawn unit vector, normal to the surface, and A 
represents the surface area of the configuration.  Now 

M 
Cm ~ i o _ 

|pV2Ac 

and 

K       oV^q 
'mq  .qc  oq\pVAc2' 

V 
ÖCm_ ö/H*' 

2V    x 

Therefore Cm  and Cm.  are respectively, 

ö        k 

'** ~ ^IpVAc2 

rz-c' p2it 
/ I        (x - Xo)(pq)BR sin 6 d9 dx + 

ri      pr/2 
/ (x "  xo)(Pq)BR  sin 0  dö  dx + 

(x  "  xoKPq)w dr  dx 

Z-c'Ja 
(11) 
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Cmd = öd pVAc2 

f n-c' r2jt 
<i I (x -  x0)(Pdc)BR sin 0  d0  dx + 

/ (x -  x0)(P(i) 
JZ-c'JO 

B- R  sin 6  de  dx + 

JZ-c' Ja 
(x " x0)(p(i)wdr dx (12) 

where the first integral in each expression is the contribution of the 
body ahead of the wing and the last two in each expression are the   . 
contributions of the wing-body section. 

The conditions to be  imposed in evaluating these  integrals are: 

(a) On the body ahead of the wing,     s = R 

(b) On the body at the wing-body section,     R = a    and    — = 0 

(c) On the wing,    ^ = Constant = tan e 
dx 

Integration of the terms for the wing-body section of the configuration 
may be simplified by making the substitutions for x and x,-, which are 

suggested by condition (c). Since —^ = tan e, 
UA 

s = x tan e + Q 

where Q is a constant. Therefore, 

x = ^-=^ 
tan e 

x = S° ~ Q 
o  tan e 

dx = ds 
tan e 
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and the  limits of integration are  now from    s = a    to    s  =  smax<     From 

the geometry of the configuration (see fig.   l),     %ax = c ^an e     an^ 
sQ = c0 tan e,    where    c0    is the location of the point of rotation 
measured from the apex of the basic wing,  positive  in the- positive 
x-direction. 

Performing the operations indicated in equations (ll)  and (12)   and 
substituting limits,     smax = c "*;an e>     and    so = co ^an 6    results in 

Cm    =  - -^   r_C     (x -  Xe)R2dx - &L   P""     (x - x0)2R |S dx - 
q Ac2 Jo Ac2 Jo dx 

6« tan ef| e - -£ f] + hn tan e ^(f - ^ g) (13) 

cm-   = " "=5   ( (x " x0)R2dx - 2n tan e(| h - -^ m) (ik) 

where 

e = 1 - -5- k    -(- + - loge -)k 2.2      flk1 1^4 
3k    "    3+3l0Sek 

f = i . | k2 . n k3 + 9 ^ 
5    5    5 

g = 1 - 2k2 + k1*' 

h = 1 - kk2  + R + it- loge ±\TS^ 

m = 1 - 6k2 + 8k3 - 3k^ 

The variation of these interference factors with k is shown in figure 2. 
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Equations (13) and (lh)   are the expressions for Cm  and C^ for 

a slender-delta-wing and slender-body combination corresponding to the 
conditions stipulated.    When these terms are added to obtain the damping- 
in-pitch parameter    Cm    + C^,     integration by parts allows the resulting 

expression to be written as 

Cmq + Cmd 
.^[(Z.c.).»b]2-6ntanc(| f    + 

)     + 
C°ff      C° 4« tan c — 1   - -=- 
c  V c 

2rt tan € L h m (15) 

Again, from the geometry of the configuration, when k £  1, 

(I  -  c') - x0 = -(c0 - 
tan e 

This relation allows equation (15)  to be written as 

Cmq + C^ -krtk   tan e I i? - 3k Sup c        \ c 

co^ 6« tan e I ■& e f    + 

kit tan € ^ f - -=- g    -  2n tan el| h - -=- ml (16) 

When k = 1,  the wing span goes to zero, and for a slender body of 
revolution 

'In Ac2 _ o 
(x - x0)R2dx 

Ac^./o 
(x-x0)2Rgdx (17) dx 

Cmd " 
itZL / 
Ac2 Jo 

(x - xQ)R <lx (18) 
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and 

S + ^=-^U-x0)2 (19) 

where    A    and    c    represent   some characteristic area and length,  respec- 
tively,   of the body.    Equation (19)   agrees with Miles'  result  (refer- 
ence  10)   if    A = fla2    and    c  =  I. 

When R = a = 0, the body radius goes to zero, and for a slender 
delta wing 

S . -6» tan ,(| - C-S)  ♦ ku  tan « £(l - ^ (20) 

c 
Cm* = -2« tan e 1  - -£) (21) 

which are the expressions for Cmq and C,^ for the slender delta wing 
found by Ribner (reference ll). 

From these equations for Cm  and C^    the terms for the wing- 
q 

body section of a slender-delta-wing and slender-body combination are 
seen to be  in the  same form as    C™      and    C^    for the basic wing alone. 
Each term of the equations for the basic wing alone  is modified by a 
factor which is a function of the ratio of the body diameter to the 
maximum wing span.    This modification is due to the interference effects 
which result from placing a slender body on a slender delta wing. 

Cm      and    C   .     for Broad-Delta-Wing and Slender-Body Combinations 

From practical considerations,   solutions for    Cm      and    C^    for 
broad-delta-wing and slender-body combinations  in supersonic flow are 
desired.    A method of obtaining an approximate  solution to this 
problem from the preceding development is  suggested by the similarities 
between the expressions for the  slender delta wing alone and for the 
slender-delta-wing and slender-body section of the configuration.    An 
intuitive approach would be to assume that a delta-wing and slender- 
body section,   in going from a slender-delta-wing and slender-body section 
to a broad-delta-wing and slender-body section,  follows the  same laws 
that a delta wing alone follows in making the  same transition (see the 
next  section for a discussion of the validity of this assumption). 



Ik KACA TN 2553 

Investigations by Brown and Adams  (reference 12)   and by Ribner and 
Malvestuto (reference 13) made after the publication of Ribner's paper 
on the  stability derivatives of slender delta wings  (reference 11)   show 
that the stability derivatives of broad delta wings in compressible 
supersonic flow such that    ß tan e < 1    are the  same as the results for 
the  slender delta wing multiplied by certain elliptic  integrals which 
are functions of the wing semiapex angle and the Mach number of the flow. 
Applying these laws to the wing-body section gives 

'm_ (x - Xo)R2dx 
'Z-c' 

U \&T> dR A 

A,-j6jt tan e 2. e —=• f + \rj\n tan 6 (22) 

'*& 

2-c' 
(x - x0)R2dx + X,2n tan d%- h - -2. m (23) 

where X^t    ^2t     and ^3 are "the appropriate elliptic integrals (see 
fig. 3)• The damping-in-pitch parameter is 

"mr 
+ C 

%, 
-kitk.   tan e I-2 * cf*(r X-J^ÖJI tan e(|r e - — f 1 

\Jm tan e -=Hf —=~ S 1 + Xo2it tan e Ih-SJ (2*) 

In order to determine approximate expressions for Cm  and Cm. 

for the configuration when the wing leading edges are supersonic 
(ß tan e > l), the analogy drawn previously between the laws followed 
by a broadening delta wing alone and a broadening-delta-wing and slender- 
body section is continued into the region where ß tan e > 1. 

As a delta wing alone continues to broaden to the extent that 
ß tan e > 1, the equations for Cm  (see reference 12) and C™.  are 
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S--§M-!TI:T <*> 
Ca& = — Iff * "Tif (26) 

(cin^ was obtained by use of equation (15) in reference 13 and agrees 

with Miles* result (reference lk).)  Therefore the derivatives for a 

broad-delta-wing and  slender-body combination in supersonic flow,   such 
that    ß tan e > 1,     may be approximated by 

'  F\f e-Tfj+i?'irlf -T*J ' (27) 

and 

(28) 
n k*  /     /      x 2     k/o    cn \ cm&  = 0 /    (x - XQJR dx + -y| h - = m 

Ac2 Jo R3\8    C  j 

provided the body ahead of the wing-body section remains slender with 
respect to the Mach cone emanating from its nose. 

Because of the nature of the factor X, and the values of C 
and cmä for ß tan e > 1>  a general curve, such as Cm + CV 

plotted against ß tan e, cannot be drawn. Certain basic delta vings 
have therefore been chosen and curves of Cm + C^ plotted against M 

have been drawn for different values of k. These curves are presented 
in figure k. 
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DISCUSSION AND CONCLUDING REMARKS 

By an extension of the method used by Spreiter in reference 7 the 
pitching-moment  derivatives    Cm      and    C^    for  supersonic  speeds have 

been developed for a slender-delta-wing and slender-body combination 
having no afterbody.    By drawing an analogy between the aerodynamics of 
the wing-body section of the  configuration and the aerodynamics of a 
delta wing alone,  the results for the slender-delta-wing and lender- 
body combination were modified to the extent that approximate  solutions 
for    C        and    C^.     for broad-delta-wing and slender-body combinations 

mq ^ 
were also obtained. 

In order to check the validity of the reasoning used In arriving at 
the assumption by which the approximate  solutions were obtained,  the  same 
reasoning was applied to Spreiter's results  for the  lift-curve  slope    C^ 
of a wing-body combination for which an exact  solution to the  linearized 
supersonic-flow equation also exists  (reference 6). 

In reference 6,  Browne,  Friedman,   and Hodes have presented an exact 
solution to the  linearized equation of steady  supersonic  flow for a 
delta-wing and  slender-conical-body combination for which the  apexes are 
coincident.     Spreiter  (reference  7)  has presented a solution to the two- 
dimensional Laplace equation for the  same configuration.     In order to 
obtain some indication as to the reliability of the assumption made    the 
same reasoning was  applied to Spreiter's  results for    C^    of the  delta- 
wing and conical-body configuration as was applied to the    Cmq    and    C^ 

results of this paper,   and the modification of Spreiter«s results were 
then compared with the  results of reference 6.     The results erf this 
comparison are  shown in figure  5 wherein    ßC^    is plotted against 
ß tan e     for different values of    k.     For    k = 0-70    the  curve  from 
reference 6 is  incorrect for high values of    ß tan €    because an insuf- 
ficient number of terms of the   series  results were taken. 

From the results of this  comparison it  appears that values of    Cmq 

and    C   .     for broad-delta-wing and  slender-body combinations will give 

fairly good approximations up to at least    k = O.pO. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field,  Va., August 21,  1951 
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APPENDIX 

CONDITIONS FOR LAPLACE SOLUTION TO APPLY TO SUPERSONIC RANGE 

T    4-T,    n •   -a. n2 d20      2M      d20 M2 d2ßS in the limit,   as    ß    —%,    -rr- v" K.,    and    -75- —%    approach zero. 
dx^ v    ox OT v^ dt 

a solution to the two-dimensional Laplace equation 

dr2      r ör      r2 do2 

is a solution to the linearized equation of supersonic flow 

2^1      tf£      IM      i^,2M£    0%        £ ö2^ 
dx2      dr2      r 5r " r2 ör2        V    Sx~§t + y2 ^2 

Therefore these two equations are compatible if the above limiting con- 
ditions are  satisfied. 

In equation (3)  a solution to the two-dimensional Laplace equation 
is given as 

0 = 0(w,R,s,r,0) (29) 

where R = R(x) and s = s(x) = Kx + Q.  If, for the present, the assump- 
tion is made that w = w(x,t), from-equation (29) 

• ti. = öMöwf + ttftef + tifeJf + Jjfa äs dR + Ji. öW ds . 
öx2      dw2^x/        dR2^x'        ds2\öx/ low dR dx dx      dw ds dx dx 

^^ dx dx I     dw öx2      OR dx2      ds dx2 U0J 

520    = S2^ dw dw +    d20    dw dR +    d20    dw ds + d£   o^w /^-,\ 
<3x dt      £w2 Sx cut      dw dR St" dx      dw ds St  dx     dw dx dt 
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and 

For constant rate of pitch, r =  w(x) = q(x - x0),  and from 
equations (30) to (32) 

dx^ 

dw 

srst   öt2 

d20     „ ,   ö^0_K dR^M^R 
rflqK + dRS7K  ax;1     dfHv2 

(32) 

(33) 

For constant accelerated motion in the vertical direction, 
w = w(t)   = ccVt,     and from equations  (30)  to  (32) 

,2 ä = B2 l?^\2
+^K2 + 2    * 

dR2V 2\dX; 

dR      M d2jR 
W%Z      dx      dR dx2 

M 
2 ^7- 

,2/ & 
V   dx dt Vöw OR      dx      dw ds 

adR+^t^> 

V2 dt2 dw2 

^     (310 

An examination of equations  (33)   and  (3*0   shows that,   in order for 
the  Laplace  solution to be a  solution to the linearized equation of 

supersonic flow,    ^    %    K,     q,     and    a    must approach zero. 
dx' dx£ 

Within the framework of the small-disturbance theory, however, such 
stringent conditions as these are not necessary for the Laplace solution 

_,     ^ ., .  dR  d2R 
to apply to the supersonic range. Rather it is required that —, —, 

Q.X 



NACA TN 2553 19 

K, q,     and ex be of such an order of magnitude that ß —-c-, 
ox 

2 TT s    s. .>     anti    ~K —7;   1°e negligibly small compared with the remaining V   dx dt v2 ^2 

terms of the linearized equation of supersonic flow. 
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Figure 1.- Geometry of configuration and coordinate system used. 
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Figure k.-  Variation of Cm + Cmj. vith Mach number for various values 

of k for -2 = 0.85. 
c 
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(b)    € = 30°. 

Figure h.- Continued. 
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Figure k. - Contim led. 
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(d)  e = 60°. 

Figure k.-  Concluded. 



NA.CA TN 2553 29 

Reference 7 

Rafetance 7 
(moe//f/ecf) / Reference 7 

y— (m ocfifie o/) 

Figure 5.- ßCr       plotted against    ß tan e    for various values of    k    for 

delta-wing and conical-body combination.    Comparison of exact solution 
of reference 6 and modified solution of reference 7. 
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